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Challenge setup

Input: time series of neural activity obtained
from fluorescence signals
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Dataset consists of:
* Several networks with 1000 neurons

Goal: to predict the connectivity
between neuron pairs

—

* For each neuron, 1 hour time series of neural activity sampled at 20ms with values

normalized in [0,1]
* Training networks contain connectivity labels

Evaluation based on the Area under the ROC Curve




What is hard about this challenge?

Episodes of synchronous bursting:
* Time periods conveying low
connectivity information

\J\J“M Background noise and light
o scattering artifacts:

\ * Noise and signal can be confused

0 + data.org[l:(I + 2000), pos[1]]

= WNN'J\J\N Slow frame rate of ~20 ms is 10
times slower than neuron’s firing
o dynamic:

| | | | | * Direct vs indirect effects and causal
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Solution guidelines

Idea:
“Optimizing a single connectivity indicator may be a limiting strategy because it will tend
work optimally for particular conditions of synchronous bursting and noise.”

How:
To approximate a function able to combine several connectivity indicators optimized for
different conditions of synchronous bursting and noise.

Additional non-functional requirements:

* Given the large number of connectivity indicators that need to be computed (training
and test networks, and for each neuron pair), the computational complexity of
connectivity indicators must be low.

* Given the a priori large number of possible solutions to each of the main challenge
problems (synchronous bursting, noise and direct vs indirect effects), we favored a
modular approach.



We run this feature
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Building blocks, spike detector and noise removal

| {Noise threshold, Synchronization rate}; ; |
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Goal: To infer the actual spike train of neuron i, given the time series of neural activity:
1 72 T 1,2 T
F@:{F’L7F’L77FZ }—)n:{’nl,nz,,nz}

How: Fast-oopsi developed by Joshua Vogelstein:

n = argmaz, Pr(n|F)

Post-processing: The Noise Removal Step removes spikes below a parameter value Noise Level
Evaluation vs Backward difference ( »! = Ff — /"' ): using the complete feature engineering
pipeline, the training network Normal, and a large set of Noise Levels {NL,...,NL,}:

mean {AUC, ,,}=0.909 mean {AUC,; ,,}=0.902
max{AUC, ,,}=0.932 max{AUC,; ,,}=0.929




Building blocks, Burst regime removal

| {Noise threshold, Synchronization rate}; ; |
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Goal: To remove episodes of synchronous bursting because they convey low connectivity information

How: To remove time steps t in all neurons s.t.
N

> 1{n} #0} > SR.N

i=1

n: probability of neuron i spiking at time t

N: number of neurons
SR: Synchronization Rate or percentage of neurons allowed to fire at the same time t



Building blocks, Connectivity score

| {Noise threshold, Synchronization rate}; ; |
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Goal: To compute a connectivity indicator between all neuron pairs given the spike trains computed in
previous steps
Non-functional requirements: Computational performance should be low
2 training networks + test and validation networks
1000 neurons per network
M connectivity indicators for each neuron pair
How: Correlation shows good AUC with reasonable computational performance
Limitations: Unable to identify directed connections




Building blocks, Network deconvolution

| {Noise threshold, Synchronization rate}; ; u |
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Goal: To eliminate the combined effect of indirect paths of arbitrary length (Slow frame rate of 20 ms ~
10 times slower than neuron’s firing dynamic)

How: Network Deconvolution algorithm developed by Soheil Feizi et Al. 2013:
—1
Cdi?" — Oobs (I + Cobs)

1) To normalize in the interval [-1,1] the connectivity score matrix
2) To decompose with SVD the matrix obtained in step 1
3) To compute the eigenvalues of the deconvolved matrix according to:

d_ N
! A+ 1

where A being the i,;, eigenvalue of the normalized matrix

4) To compose the direct dependency matrix according to:
Cyir = UDU !

d
Where U is the matrix of eigenvectors and D is a diagonal matrix s.t. i, diagonal elementgis )\@



Building blocks, Training and test data preparation

| {Noise threshold, Synchronization rate}; ; |
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1. To normalize the values of the deconvolved matrix so that networks using the same parameters
(i.e. NL, SR) have similar distributions.
2. To create data tables to train and test a supervised model
How: For each network we create one table s.t.:
Row: connectivity indicators for neuron pair (i,j) computed according to different Noise
Levels and synchronization rates
Column: connectivity indictors for all neuron pairs computed according to a particular
Noise Level and Synchronization Rate
Column-wise Z-normalization to normalize distributions across different networks
Rows corresponding to self-loops, e.g. (i,i) are all 0 (We do not learn self-loops)
We ignore directed connections, e.g. (i,j)=(j,i)
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Building blocks, Supervised model

| {Noise threshold, Synchronization rate}; ; |
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Training sub-sampling strategy:

* Self-loop rows are not included

* All rows with label 1 are included

* 5% of rows with label 0 are included

Spike Noise Burst Connectivity Network
detector removal regime sc i
ova

Random Forest; (R,)
Gradient Boosting Machine, (G,)

Random Forest, (R,)
Gradient Boosting Machine, (G,)

) 4

P=(R1,G;+R,,G,)/4
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Experiments

Test Tetwork

—=

Model
|

1
R;+G; [ R,+G, R3+G R+G+ | R+G;+
R+G; R,+G,

Normal, - 9392 .9388 9394 .9386 = .9398 9398 .9401
Normal, 839 .93 9399 .9401 = = 9403 .9399 .9409 = 9409 .9413
Normal, 884  .933 9393 .9396 9392 .9396 - - .9402 .9402 - .9405
Test .893
\ J\ J\ )
1 J 1

Best individual
connectivity indicator
is better than GTE

Simple supervised model is
better than best individual
conn. indicator

0.94063

We improve performance
an reduce variance by
averaging predictions
from many models
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Conclusions, limitations and future work

Conclusions

* Third best model according to the private leadeboard: AUC,=.893, AUC, .,=.94063

* To approximate a function able to combine several connectivity indicators optimized for
different conditions of synchronous bursting and noise seems to be a good idea

Limitations

* We are unable to identify the connectivity direction and self-loops

* High computational cost due to the computation of large number of connectivity
indicators (e.g. training our last model took > 48 hours on i7 laptop with 32 Gb)

Future work:

* Add few directional connectivity indicators to the predictive model (e.g. GTE)

* Increase the number of features by using a finer grid of parameters (i.e. {Noise threshold,
Synchronization rate},.; \ )

* Increase the performance of predictive models by using semi-supervised variants of
random forest and gradient boosting machines




