<u>Supervised Neural Network Structure Recovery</u>

Ildefons Magrans de Abril

Challenge setup
Major difficulties
Solution guidelines
Design overview
Building blocks
Experiments
Conclusions

Challenge setup

Dataset consists of:

- Several networks with 1000 neurons
- For each neuron, 1 hour time series of neural activity sampled at 20ms with values normalized in [0,1]
- Training networks contain connectivity labels

What is hard about this challenge?

Episodes of synchronous bursting:

Time periods conveying low connectivity information

Background noise and light scattering artifacts:

Noise and signal can be confused

Slow frame rate of ~20 ms is 10 times slower than neuron's firing dynamic:

 Direct vs indirect effects and causal relationships are hard to detect

Solution guidelines

Idea:

"Optimizing a single connectivity indicator may be a limiting strategy because it will tend work optimally for particular conditions of synchronous bursting and noise."

How:

To approximate a function able to combine several connectivity indicators optimized for different conditions of synchronous bursting and noise.

Additional non-functional requirements:

- Given the large number of connectivity indicators that need to be computed (training and test networks, and for each neuron pair), the computational complexity of connectivity indicators must be low.
- Given the a priori large number of possible solutions to each of the main challenge problems (synchronous bursting, noise and direct vs indirect effects), we favored a modular approach.

Design overview

We run this feature engineering pipe M times

Neuron pair	{NT,SR} ₁	{NT,SR} ₂	{NT,SR}₃	{NT,SR} _M	True label
1 -> 1	0	0	0	0	0
1 -> 2	0.9	0.87	0.85	0.92	1
2 -> 1	0.9	0.87	0.85	0.92	1
1 -> 3 	0.3	0.34	0.35	0.24	0
N -> N	0	0	0	0	0

F(NN time series, i, j) ϵ [0,1]

Building blocks, spike detector and noise removal

Goal: To infer the actual spike train of neuron i, given the time series of neural activity:

$$F_i = \{F_i^1, F_i^2, ..., F_i^T\} \rightarrow n = \{n_i^1, n_i^2, ..., n_i^T\}$$

How: Fast-oopsi developed by Joshua Vogelstein:

$$\hat{n} = arg \, max_n Pr(n|F)$$

<u>Post-processing:</u> The *Noise Removal* Step removes spikes below a parameter value *Noise Level* <u>Evaluation vs Backward difference</u> ($n_i^t = F_i^t - F_i^{t-1}$): using the complete feature engineering pipeline, the training network *Normal*₁ and a large set of Noise Levels { $NL_1,...,NL_M$ }:

Fast-oopsi	Difference	
mean {AUC _{1M} }=0.909	mean {AUC _{1M} }=0.902	
max{AUC _{1M} }=0.932	max{AUC _{1M} }=0.929	

Building blocks, Burst regime removal

Goal: To remove episodes of synchronous bursting because they convey low connectivity information

How: To remove time steps t in all neurons s.t.

$$\sum_{i=1}^{N} \mathbb{1}\{n_i^t \neq 0\} > SR.N$$

n_it: probability of neuron i spiking at time t

N: number of neurons

SR: Synchronization Rate or percentage of neurons allowed to fire at the same time t

Building blocks, Connectivity score

Goal: To compute a connectivity indicator between all neuron pairs given the spike trains computed in previous steps

Non-functional requirements: Computational performance should be low

2 training networks + test and validation networks

1000 neurons per network

M connectivity indicators for each neuron pair

How: Correlation shows good AUC with reasonable computational performance

<u>Limitations:</u> Unable to identify directed connections

Building blocks, Network deconvolution

Goal: To eliminate the combined effect of indirect paths of arbitrary length (Slow frame rate of 20 ms ~ 10 times slower than neuron's firing dynamic)

How: Network Deconvolution algorithm developed by Soheil Feizi et Al. 2013:

$$C_{dir} = C_{obs}(I + C_{obs})^{-1}$$

- 1) To normalize in the interval [-1,1] the connectivity score matrix
- 2) To decompose with SVD the matrix obtained in step 1
- 3) To compute the eigenvalues of the deconvolved matrix according to:

$$\lambda_i^d = \frac{\lambda_i}{\lambda_i + 1}$$

where λ_i being the i_{th} eigenvalue of the normalized matrix

4) To compose the direct dependency matrix according to:

$$C_{dir} = UDU^{-1}$$

Where \emph{U} is the matrix of eigenvectors and \emph{D} is a diagonal matrix s.t. \emph{i}_{th} diagonal element is λ_i^d

Building blocks, Training and test data preparation

Goal:

- 1. To normalize the values of the deconvolved matrix so that networks using the same parameters (i.e. NL, SR) have similar distributions.
- 2. To create data tables to train and test a supervised model

How: For each network we create one table s.t.:

- Row: connectivity indicators for neuron pair (i,j) computed according to different Noise Levels and synchronization rates
- Column: connectivity indictors for all neuron pairs computed according to a particular Noise Level and Synchronization Rate
- Column-wise Z-normalization to normalize distributions across different networks
- Rows corresponding to self-loops, e.g. (i,i) are all 0 (We do not learn self-loops)
- We ignore directed connections, e.g. (i,j)=(j,i)

Building blocks, Supervised model

5% of rows with label 0 are included

Experiments

Conclusions, limitations and future work

Conclusions

- Third best model according to the private leadeboard: AUC_{GTF}=.893, AUC_{best}=.94063
- To approximate a function able to combine several connectivity indicators optimized for different conditions of synchronous bursting and noise seems to be a good idea

Limitations

- We are unable to identify the connectivity direction and self-loops
- High computational cost due to the computation of large number of connectivity indicators (e.g. training our last model took > 48 hours on i7 laptop with 32 Gb)

Future work:

- Add few directional connectivity indicators to the predictive model (e.g. GTE)
- Increase the number of features by using a finer grid of parameters (i.e. {Noise threshold, Synchronization rate} $_{i: 1...M}$)
- Increase the performance of predictive models by using semi-supervised variants of random forest and gradient boosting machines