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Abstract

We discuss the applicability of a recently proposed method to reconstruct cerebral network
structure (Pernice and Rotter, 2013) on the data supplied in the Neural Connectomics
Challenge. This method is based on a model of linear dynamics which provides a relation
between activity covariances and the underlying network. Even for very limited sampling
resolution, an estimate of the directed connections can be obtained under the assumption
of sparse connectivity, if indirect connections contribute significantly to the covariance
matrix. Surprisingly, and possibly due to the low importance of indirect connections in
the provided data, the sparsest estimator resulted in only limited performance. Our best
estimation relies on the inverse covariance matrix which has been adapted based on insights
gained from the model.

1. Introduction

The method recently proposed in Pernice and Rotter (2013) presents a novel approach to the
classical problem of inferring causality from correlations, which does not depend on temporal
precedence like Granger causality (Bressler and Seth, 2011) or Transfer Entropy (Schreiber,
2000). Under the assumption of a sparsely connected underlying network, information from
indirect connections can be exploited to convert the inverse covariance matrix to a directed
estimator. This can be done for covariance functions in the frequency domain, but also
for zero-lag covariances arising from processes that are faster than the experimental time
resolution.

2. Method

We approximate the cerebral network as a linear system with recurrent feedback. Consid-
ering a network of n nodes let x(t) be the n-dimensional vector of continuous-time signals
measured from these nodes and X(ω) its Fourier transform. The interactions between nodes
at frequency ω are described by the matrix G(ω) such that the dynamics of the network is
governed by the equation

X(ω) = G(ω)X(ω) + V (ω). (1)

The term V (ω) can be interpreted as the activity of the nodes independent of the recurrent

feedback due to the network. By solving Eq. (1) for X(ω) we get X(ω) =
(
1−G(ω)

)−1
V (ω).

The cross-spectral matrix is then given as

Ĉ(ω) = E[X(ω)X∗(ω)] =
(
1−G(ω)

)−1
Y (ω)

(
1−G∗(ω)

)−1
, (2)
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c© A. Niederbühl1, V. Pernice1 & S. Rotter1.
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with the real diagonal matrix Y (ω) = E
[
V (ω)V ∗(ω)

]
. Because the rows of |1−G(ω)|−1 and

the diagonal elements of
√
Y are multiplicatively related to each other we can set Y = 1

without loosing descriptive power.
Since Ĉ(ω) is the Fourier transform of C(τ) = E

[
x(t)x(t+ τ)T

]
with time lag τ , we can

use only Ĉ(0) = C(0) ≡ C if the sampling rate so slow that we only observe covariances at
time lag zero. In the following, we only discuss this reduced form of the model, which is
equivalent to a structural equation model (McIntosh and Gonzalez-Lima, 1994). However,
if there is information in the covariance function at other lags, the same method can be
applied seperately on any Ĉ(ω).

In this framework C is explained in terms of the adjacency matrix G and can be written
as power series decomposition C =

∑∞
n,m=0G

n(GT )m, which illustrates that an entry of C
includes the influence between nodes over all possible paths (Pernice et al., 2011). As is
well known (Dahlhaus et al., 1997), effects of indirect connections are reduced in the inverse
covariance matrix, here

C−1 = 1−G−GT +GTG (3)

where the remaining spurious interactions are given by the term GTG. Eq. (3) cannot be
uniquely solved for G, as can be easily seen by writing C−1 = BTB with B = (1−G).
We can substitute B with any matrix UB, as long as UTU = 1, without changing the
covariance structure. If it is reasonable to assume a sparse underlying network, as in the
case of neural connections on a cellular level, this information can be used to resolve the
ambiguity by stochastic minimization of the L1 norm of the columns of B over all unitary
transformations U .

This method could recover the correct network structure when applied to covariance
matrices given by Eq. (2), simulated dynamics of leaky-integrate-and-fire neurons (Pernice
and Rotter, 2013) and coupled autoregressive processes (not shown).

3. Neural Connectomics Challenge

On the data provided in context of the Neural Connectomics Challenge, most signal infor-
mation was extracted with fast nonnegative deconvolution (Vogelstein et al., 2010). Because
of the slow sampling rate, we assumed that much of the information which can be extracted
from the cross-covariance function is contained in the value at time shift zero. However,
the minimization of the L1 norm of B did not improve the result. Reasons could be either
strong nonlinear effects that are not captured by the dynamic model, the low signal-to-
noise-ratio, or the influence of indirect connections being too weak. Instead, we based the
reconstruction on C and C−1. Since only excitatory connections are present, the term GTG
is positive, and the estimator from Eq. (3) can be improved by using |[C−1]−| ≈ G+GT ,
by about 0.04 AUC. With the notion that causes precede their effects, we use the covariance
C(T) at the time shift of one sampling period T, to get a measure of the direction of the
interactions. We consider a nonzero covariance between two nodes a necessary condition for
a connection, which is why our final estimator for G is a multiplicative combination of C,
|[C−1]−| and C(T ), which performed less than 0.005 AUC worse than the winning solution
when applied on the test data set of the challenge (Table 1).
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Table 1: Result of the winning team in comparison to the approach described in Section 3.

Rank Team Name AUC

1 AAAGV 0.94161
7 Alexander N & vopern 0.93666
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